ConTutto - A flexible memory interface in the OpenPOWER ecosystem
P8 Memory Sub-System

- 8 DMI links available on a P8 Dual-Chip-Module
- Differential Memory Interface (DMI) high-speed links connect to a memory buffer ASICs
- 4 memory controllers per memory buffer ASIC
- ASIC and DRAM chips are co-located on a custom DIMM (CDIMM)
- 32 memory controllers available to P8
P8 Memory Sub-System with ConTutto

- Built an FPGA-based card that plugs into the DMI slot
- Enables regular system operation with any mix of CDIMMs and ConTutto cards populated
- Full compatibility with DMI protocol
- Memory controllers implemented in fabric logic and independent of DMI protocol logic
- Flexible system architecture enables easy implementation of additional features
ConTutto Card

• Intended to be an experimentation and proto-typing vehicle
• Card characteristics
 • 10 signal layers
 • 10 power/ground layers
• Plug compatible with CDIMM, but 2.5" higher-- and DIMMs add width
• Large Altera FPGA with capacity for additional function incorporated
• CFAM-S (connection to service processor) enables system integration
Logic design

- Support for all DMI commands implemented
- Some Memory Buffer ASIC features not available in initial version of ConTutto:
 - No DMI bus sparing or fail-over
 - No L4 cache
 - Several performance features not implemented
- 32:1 mux ratio between DMI link and FPGA fabric logic
- Using about 40% of available logic resources in Stratix V A9 device
- Avalon bus for design modularity, i.e. plug-and-play memory controller
Early Test Results - Latency

- Early latency results using FIO with beta level Kernel Driver in POWER8 System
- NVDIMM-N and STT-MRAM show similar performance with ConTutto on DMI
- DMI/Memory bus is the lowest latency attach point
- FIO – Flexible IO Benchmarking

© 2016 OpenPOWER Foundation
Early Test Results - IOPS

• Early IOPS results using FIO with our beta level Kernel Driver in POWER8 System

• Improved IOPS using DMI attach point

• Testing with higher iodepth and numjobs ongoing
Programmable Near-Memory Acceleration

- **Conventional computer architecture**
 - Memory system is a “slave” of the host processor

- **Novel approach**
 - Memory system actively participates to ensure that data is stored, accessed and transferred in the most (power-)efficient way resulting in the highest performance/Watt
 - Memory system integrates compute capabilities

 ➤ Memory Controller → Access Processor

- **Novel programmable architecture**
 - Enabling/differentiating technologies:
 - programmable state machine technology
 - programmable address mapping scheme
 - power-efficient “self-running” instructions

- Near-memory accelerators attach to Access Processor
Near-Memory Acceleration on ConTutto

• Ideal platform to investigate and experiment with Near-Memory Acceleration on a commercial OpenPOWER server, addressing multiple aspects:
 • design of near-memory accelerator devices
 • integration into computer system architecture
 • use of multiple devices to scale to larger storage and processing capabilities
 • programming of a hybrid system based on near-memory computing applications

• Demonstration of initial implementation of Programmable Near-Memory Accelerator concept on ConTutto for FFT computation

• Ongoing work
 • design space exploration covering device, system and application levels
 • development of near-memory computing tool set and ecosystem including compiler, debugger, performance analysis, and run-time optimization tools
ConTutto is an FPGA-based memory card that plugs into the DMI memory slot of an IBM Power8 server.

- Enables the use of different memory technologies in a Power system
 - DRAM
 - MRAM
 - NVDIMM
- Highest bandwidth & lowest latency FPGA attach point in any computer system
- Near-memory acceleration
Acknowledgments

• This work was partially funded by the Department of Energy under the FastForward-2 contract.

• Team members: Adam McPadden, Bharat Sukhwani, Kyu-hyoun Kim, Chuck Haymes, Dean Sanner, David Cadigan, Jan van Lunteren, Sameh Asaad, Dan Dreps, Hillery Hunter and many many more